Encoderless self-commissioning and identification of synchronous reluctance machines at standstill

Simon Wiedemann, Ralph M. Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

This paper presents an identification method and modelling technique which is able to characterise the complete nonlinear cross-coupling electromagnetic flux-linkage model of a synchronous reluctance machine as a function of the direct- and quadrature axes currents within a few seconds. The presented approach is suitable for identification of the self-saturation flux-curves as well as the cross-coupling flux-maps of synchronous machines without additional testing hardware. The proposed method is performed at standstill and is suitable for encoderless and self-commissioning applications. During the identification, the reference phase voltages and measurements of the phase currents are used to estimate the flux-linkages of the machine. Afterwards, the obtained data is utilised in a neural network training routine. The trained simple neural-network represents the complete flux-maps of the machine accurately, without discontinuities and with a small amount of model parameters which has been confirmed due to comparison of the results with the measurements of a constant speed method.

OriginalspracheEnglisch
TitelProceedings - 2017 IEEE International Symposium on Industrial Electronics, ISIE 2017
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten296-302
Seitenumfang7
ISBN (elektronisch)9781509014125
DOIs
PublikationsstatusVeröffentlicht - 3 Aug. 2017
Veranstaltung26th IEEE International Symposium on Industrial Electronics, ISIE 2017 - Edinburgh, Scotland, Großbritannien/Vereinigtes Königreich
Dauer: 18 Juni 201721 Juni 2017

Publikationsreihe

NameIEEE International Symposium on Industrial Electronics

Konferenz

Konferenz26th IEEE International Symposium on Industrial Electronics, ISIE 2017
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtEdinburgh, Scotland
Zeitraum18/06/1721/06/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Encoderless self-commissioning and identification of synchronous reluctance machines at standstill“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren