Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data

Martin Graeßner, Bettina Jungwirth, Elke Frank, Stefan Josef Schaller, Eberhard Kochs, Kurt Ulm, Manfred Blobner, Bernhard Ulm, Armin Horst Podtschaske, Simone Maria Kagerbauer

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

7 Zitate (Scopus)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Keyphrases

Nursing and Health Professions

Engineering

Medicine and Dentistry

Pharmacology, Toxicology and Pharmaceutical Science

Chemical Engineering