EMG-Based Volitional Torque Estimation in Functional Electrical Stimulation Control

Hossein Kavianirad, Satoshi Endo, Thierry Keller, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

Functiona1 electrical stimulation (FES) applies electrical pulses to muscle fibers through the skin for assisting functional movements in patients with motor disability. Muscle activity feedback such as volitional Electromyography (vEMG) can optimize the performance of the FES system in both rehabilitation or activity of daily living (ADL), however, artifacts caused by simultaneous use of FES and EMG on the same muscles contaminate the EMG signal. This paper, using an adaptive filter, aims to investigate the estimation of the volitional torque from filtered vEMG. Based on this estimation, the usability and performance of the adaptive filter for estimating volitional torque are studied on 5 healthy participants and we show that this filter can be used for volitional torque estimation. In the next step, it is shown how this map can be used in closed-loop FES control for estimating volitional torque.

OriginalspracheEnglisch
Titel7th IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2022 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten171-176
Seitenumfang6
ISBN (elektronisch)9781665494694
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung7th IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2022 - Proceedings - Virtual, Online, Malaysia
Dauer: 7 Dez. 20229 Dez. 2022

Publikationsreihe

Name7th IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2022 - Proceedings

Konferenz

Konferenz7th IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2022 - Proceedings
Land/GebietMalaysia
OrtVirtual, Online
Zeitraum7/12/229/12/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „EMG-Based Volitional Torque Estimation in Functional Electrical Stimulation Control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren