Emergency Floor Plan Digitization Using Machine Learning

Mohab Hassaan, Philip Alexander Ott, Ann Kristin Dugstad, Miguel A.Vega Torres, André Borrmann

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

An increasing number of special-use and high-rise buildings have presented challenges for efficient evacuations, particularly in fire emergencies. At the same time, however, the use of autonomous vehicles within indoor environments has received only limited attention for emergency scenarios. To address these issues, we developed a method that classifies emergency symbols and determines their location on emergency floor plans. The method incorporates color filtering, clustering and object detection techniques to extract walls, which were used in combination to generate clean, digitized plans. By integrating the geometric and semantic data digitized with our method, existing building information modeling (BIM) based evacuation tools can be enhanced, improving their capabilities for path planning and decision making. We collected a dataset of 403 German emergency floor plans and created a synthetic dataset comprising 5000 plans. Both datasets were used to train two distinct faster region-based convolutional neural networks (Faster R-CNNs). The models were evaluated and compared using 83 floor plan images. The results show that the synthetic model outperformed the standard model for rare symbols, correctly identifying symbol classes that were not detected by the standard model. The presented framework offers a valuable tool for digitizing emergency floor plans and enhancing digital evacuation applications.

OriginalspracheEnglisch
Aufsatznummer8344
FachzeitschriftSensors (Switzerland)
Jahrgang23
Ausgabenummer19
DOIs
PublikationsstatusVeröffentlicht - Okt. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Emergency Floor Plan Digitization Using Machine Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren