Abstract
In this paper, we study the metrics of negative type, which are metrics (V, d) such that √d is an Euclidean metric; these metrics are thus also known as "l 2-squared" metrics. We show how to embed n-point negative-type metrics into Euclidean space l 2 with distortion D = O(log 3/4 n). This embedding result, in turn, implies an O(log 3/4 k)-approximation algorithm for the Sparsest Cut problem with non-uniform demands. Another corollary we obtain is that n-point subsets of l 1 embed into l 2 with distortion O(log 3/4 n).
Originalsprache | Englisch |
---|---|
Seiten | 102-111 |
Seitenumfang | 10 |
Publikationsstatus | Veröffentlicht - 2005 |
Extern publiziert | Ja |
Veranstaltung | Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms - Vancouver, BC, USA/Vereinigte Staaten Dauer: 23 Jan. 2005 → 25 Jan. 2005 |
Konferenz
Konferenz | Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Land/Gebiet | USA/Vereinigte Staaten |
Ort | Vancouver, BC |
Zeitraum | 23/01/05 → 25/01/05 |