Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut

Shuchi Chawla, Anupam Gupta, Harald Räcke

Publikation: KonferenzbeitragPapierBegutachtung

38 Zitate (Scopus)

Abstract

In this paper, we study the metrics of negative type, which are metrics (V, d) such that √d is an Euclidean metric; these metrics are thus also known as "l 2-squared" metrics. We show how to embed n-point negative-type metrics into Euclidean space l 2 with distortion D = O(log 3/4 n). This embedding result, in turn, implies an O(log 3/4 k)-approximation algorithm for the Sparsest Cut problem with non-uniform demands. Another corollary we obtain is that n-point subsets of l 1 embed into l 2 with distortion O(log 3/4 n).

OriginalspracheEnglisch
Seiten102-111
Seitenumfang10
PublikationsstatusVeröffentlicht - 2005
Extern publiziertJa
VeranstaltungSixteenth Annual ACM-SIAM Symposium on Discrete Algorithms - Vancouver, BC, USA/Vereinigte Staaten
Dauer: 23 Jan. 200525 Jan. 2005

Konferenz

KonferenzSixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
Land/GebietUSA/Vereinigte Staaten
OrtVancouver, BC
Zeitraum23/01/0525/01/05

Fingerprint

Untersuchen Sie die Forschungsthemen von „Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren