Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut

Shuchi Chawla, Anupam Gupta, Harald Räcke

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

19 Zitate (Scopus)

Abstract

In this article, we study metrics of negative type, which are metrics (V, d) such that d is an Euclidean metric; these metrics are thus also known as ℓ2-squared metrics. We show how to embed n-point negative-type metrics into Euclidean space ℓ2 with distortion D = O(log 3/4n). This embedding result, in turn, implies an O(log 3/4k)-approximation algorithm for the Sparsest Cut problem with nonuniform demands. Another corollary we obtain is that n-point subsets of ℓ1 embed into ℓ2 with distortion O(log 3/4 n).

OriginalspracheEnglisch
Aufsatznummer22
FachzeitschriftACM Transactions on Algorithms
Jahrgang4
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 1 Mai 2008
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren