Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

Stratis Tzoumas, Antonio Nunes, Ivan Olefir, Stefan Stangl, Panagiotis Symvoulidis, Sarah Glasl, Christine Bayer, Gabriele Multhoff, Vasilis Ntziachristos

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

190 Zitate (Scopus)

Abstract

Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO 2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO 2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO 2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO 2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

OriginalspracheEnglisch
Aufsatznummer12121
FachzeitschriftNature Communications
Jahrgang7
DOIs
PublikationsstatusVeröffentlicht - 30 Juni 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren