EFFICIENT VERTICAL OBJECT DETECTION IN LARGE HIGH-QUALITY POINT CLOUDS OF CONSTRUCTION SITES

Miguel A. Vega, Alexander Braun, Heiko Bauer, Florian Noichl, André Borrmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Even when adherence to project schedule is the most critical performance metric among project owners, still 53 % of typical construction projects exhibit schedule delays. To contribute to more efficient construction progress monitoring, this research proposes a method to detect the most common temporary object classes in large-scale laser scanner point clouds of construction sites. The proposed workflow includes a combination of several techniques: image processing over vertical projections, finding patterns in 3D detected contours, and performing checks over vertical cross-sections. A deep learning algorithm was leveraged to classify these cross-sections for the purpose of formwork detection. After applying the method on three real-world point clouds and testing with three object categories (cranes, scaffolds, and formwork), the results reveal that the process achieves average rates above 88 % for precision and recall and outstanding computational performance (1s to process 105 points). These metrics demonstrate the method’s capability to support the automatic segmentation of point clouds of construction sites.

OriginalspracheEnglisch
TitelProceedings of the 2021 European Conference on Computing in Construction
Redakteure/-innenDaniel M. Hall, Athanasios Chassiakos, James O'Donnell, Dragana Nikolic, Yiannis Xenides
Herausgeber (Verlag)European Council on Computing in Construction (EC3)
Seiten148-157
Seitenumfang10
ISBN (Print)9783907234549
DOIs
PublikationsstatusVeröffentlicht - 2021
VeranstaltungEuropean Conference on Computing in Construction, EC3 2021 - Virtual, Online
Dauer: 26 Juli 202128 Juli 2021

Publikationsreihe

NameProceedings of the European Conference on Computing in Construction
ISSN (elektronisch)2684-1150

Konferenz

KonferenzEuropean Conference on Computing in Construction, EC3 2021
OrtVirtual, Online
Zeitraum26/07/2128/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „EFFICIENT VERTICAL OBJECT DETECTION IN LARGE HIGH-QUALITY POINT CLOUDS OF CONSTRUCTION SITES“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren