Efficient segmentation of multi-modal optoacoustic and ultrasound images using convolutional neural networks

Berkan Lafci, Elena Merćep, Stefan Morscher, Xosé Luís Deán-Ben, Daniel Razansky

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Multispectral optoacoustic tomography (MSOT) offers the unique capability to map the distribution of spectrally distinctive endogenous and exogenous substances in heterogeneous biological tissues by exciting the sample at various wavelengths and detecting the optoacoustically-induced ultrasound waves. This powerful functional and molecular imaging capability can greatly benefit from hybridization with pulse-echo ultrasound (US), which provides additional information on tissue anatomy and blood flow. However, speed of sound variations and acoustic mismatches in the imaged object generally lead to errors in the coregistration of compounded images and loss of spatial resolution in both imaging modalities. The spatially-and wavelength-dependent light fluence attenuation further limits the quantitative capabilities of MSOT. Proper segmentation of different regions and assignment of corresponding acoustic and optical properties turns then essential for maximizing the performance of hybrid optoacoustic and ultrasound (OPUS) imaging. Particularly, accurate segmentation of the boundary of the sample can significantly improve the images rendered. Herein, we propose an automatic segmentation method based on a convolutional neural network (CNN) for segmenting the mouse boundary in a pre-clinical OPUS system. The experimental performance of the method, as characterized with the Dice coefficient metric between the network output and the ground truth (manually segmented) images, is shown to be superior than that of a state-of-the-art active contour segmentation method in a series of two-dimensional (cross-sectional) OPUS images of the mouse brain, liver and kidney regions.

OriginalspracheEnglisch
TitelPhotons Plus Ultrasound
UntertitelImaging and Sensing 2020
Redakteure/-innenAlexander A. Oraevsky, Lihong V. Wang
Herausgeber (Verlag)SPIE
ISBN (elektronisch)9781510632431
DOIs
PublikationsstatusVeröffentlicht - 2020
Extern publiziertJa
VeranstaltungPhotons Plus Ultrasound: Imaging and Sensing 2020 - San Francisco, USA/Vereinigte Staaten
Dauer: 2 Feb. 20205 Feb. 2020

Publikationsreihe

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Band11240
ISSN (Print)1605-7422

Konferenz

KonferenzPhotons Plus Ultrasound: Imaging and Sensing 2020
Land/GebietUSA/Vereinigte Staaten
OrtSan Francisco
Zeitraum2/02/205/02/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient segmentation of multi-modal optoacoustic and ultrasound images using convolutional neural networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren