Efficient robustness certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images and more

Aleksandar Bojchevski, Johannes Klicpera, Stephan Günnemann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

50 Zitate (Scopus)

Abstract

Existing techniques for certifying the robustness of models for discrete data either work only for a small class of models or are general at the expense of efficiency or tightness. Moreover, they do not account for sparsity in the input which, as our findings show, is often essential for obtaining nontrivial guarantees. We propose a model-agnostic certificate based on the randomized smoothing framework which subsumes earlier work and is tight, efficient, and sparsity-aware. Its computational complexity does not depend on the number of discrete categories or the dimension of the input (e.g. the graph size), making it highly scalable. We show the effectiveness of our approach on a wide variety of models, datasets, and tasks - specifically highlighting its use for Graph Neural Networks. So far, obtaining provable guarantees for GNNs has been difficult due to the discrete and non-i.i.d. nature of graph data. Our method can certify any GNN and handles perturbations to both the graph structure and the node attributes.

OriginalspracheEnglisch
Titel37th International Conference on Machine Learning, ICML 2020
Redakteure/-innenHal Daume, Aarti Singh
Herausgeber (Verlag)International Machine Learning Society (IMLS)
Seiten980-990
Seitenumfang11
ISBN (elektronisch)9781713821120
PublikationsstatusVeröffentlicht - 2020
Veranstaltung37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Dauer: 13 Juli 202018 Juli 2020

Publikationsreihe

Name37th International Conference on Machine Learning, ICML 2020
BandPartF168147-2

Konferenz

Konferenz37th International Conference on Machine Learning, ICML 2020
OrtVirtual, Online
Zeitraum13/07/2018/07/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient robustness certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images and more“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren