Abstract
This work presents an efficient numerical method to evaluate the free energy density and associated thermodynamic quantities of (quasi) one-dimensional classical systems, by combining the transfer operator approach with a numerical discretization of integral kernels using quadrature rules. For analytic kernels, the technique exhibits exponential convergence in the number of quadrature points. As demonstration, we apply the method to a classical particle chain, to the semiclassical nonlinear Schrödinger (NLS) equation and to a classical system on a cylindrical lattice. A comparison with molecular dynamics simulations performed for the NLS model shows very good agreement.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 57 |
Fachzeitschrift | Journal of Statistical Physics |
Jahrgang | 182 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - März 2021 |