Efficient modeling of generalized aerodynamic forces across mach regimes using neuro-fuzzy approaches

Maximilian Winter, Christian Breitsamter

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

In the presentwork, a nonlinear reduced-order modeling (ROM) approach based on dynamic local linear neuro-fuzzy models is presented for predicting unsteady aerodynamic loads in the time domain. In order to train the input-output relationship between the structural motion and the corresponding flow-induced loads, the local linear model tree (LOLIMOT) algorithm has been implemented. Furthermore, the Mach number is incorporated as an additional input parameter to account for different free-stream conditions with a single model. The approach is applied to the AGARD 445.6 configuration in order to demonstrate the efficiency and fidelity of the proposed method. It is indicated that the ROM-based time domain generalized aerodynamic forces (GAFs) show good agreement with the respective full-order CFD solution (AER-Eu). A further comparison in the frequency domain confirms the validity of the approach. Moreover, the potential of the method for reducing the numerical effort of aeroelastic analyses is highlighted.

OriginalspracheEnglisch
TitelNew Results in Numerical and Experimental Fluid Mechanics X - Contributions to the 19th STAB/DGLR, 2014
Redakteure/-innenAndreas Dillmann, Ewald Krämer, Gerd Heller, Christian Breitsamter, Claus Wagner
Herausgeber (Verlag)Springer Verlag
Seiten467-477
Seitenumfang11
ISBN (Print)9783319272788
DOIs
PublikationsstatusVeröffentlicht - 2016
Veranstaltung19th Symposium on New Results in Numerical and Experimental Fluid Mechanics, DGLR/STAB - Munich, Deutschland
Dauer: 4 Nov. 20145 Nov. 2014

Publikationsreihe

NameNotes on Numerical Fluid Mechanics and Multidisciplinary Design
Band132
ISSN (Print)1612-2909

Konferenz

Konferenz19th Symposium on New Results in Numerical and Experimental Fluid Mechanics, DGLR/STAB
Land/GebietDeutschland
OrtMunich
Zeitraum4/11/145/11/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient modeling of generalized aerodynamic forces across mach regimes using neuro-fuzzy approaches“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren