Efficient Learning of Urban Driving Policies Using Bird'View State Representations

Raphael Trumpp, Martin Buchner, Abhinav Valada, Marco Caccamo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Autonomous driving involves complex decision-making in highly interactive environments, requiring thoughtful negotiation with other traffic participants. While reinforcement learning provides a way to learn such interaction behavior, efficient learning critically depends on scalable state representations. Contrary to imitation learning methods, high-dimensional state representations still constitute a major bottleneck for deep reinforcement learning methods in autonomous driving. In this paper, we study the challenges of constructing bird's-eye-view representations for autonomous driving and propose a recurrent learning architecture for long-horizon driving. Our PPO-based approach, called RecurrDriveNet, is demonstrated on a simulated autonomous driving task in CARLA, where it outperforms traditional frame-stacking methods while only requiring one million experiences for efficient training. RecurrDriveNet causes less than one infraction per driven kilometer by interacting safely with other road users.

OriginalspracheEnglisch
Titel2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4181-4186
Seitenumfang6
ISBN (elektronisch)9798350399462
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Spanien
Dauer: 24 Sept. 202328 Sept. 2023

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (Print)2153-0009
ISSN (elektronisch)2153-0017

Konferenz

Konferenz26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Land/GebietSpanien
OrtBilbao
Zeitraum24/09/2328/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient Learning of Urban Driving Policies Using Bird'View State Representations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren