Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive Meshes

Mario Wille, Tobias Weinzierl, Gonzalo Brito Gadeschi, Michael Bader

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

We identify and show how to overcome an OpenMP bottleneck in the administration of GPU memory. It arises for a wave equation solver on dynamically adaptive block-structured Cartesian meshes, which keeps all CPU threads busy and allows all of them to offload sets of patches to the GPU. Our studies show that multithreaded, concurrent, non-deterministic access to the GPU leads to performance breakdowns, since the GPU memory bookkeeping as offered through OpenMP’s map clause, i.e., the allocation and freeing, becomes another runtime challenge besides expensive data transfer and actual computation. We, therefore, propose to retain the memory management responsibility on the host: A caching mechanism acquires memory on the accelerator for all CPU threads, keeps hold of this memory and hands it out to the offloading threads upon demand. We show that this user-managed, CPU-based memory administration helps us to overcome the GPU memory bookkeeping bottleneck and speeds up the time-to-solution of Finite Volume kernels by more than an order of magnitude.

OriginalspracheEnglisch
TitelHigh Performance Computing - 38th International Conference, ISC High Performance 2023, Proceedings
Redakteure/-innenAbhinav Bhatele, Jeff Hammond, Marc Baboulin, Carola Kruse
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten65-85
Seitenumfang21
ISBN (Print)9783031320408
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung38th International Conference on High Performance Computing, ISC High Performance 2023 - Hamburg, Deutschland
Dauer: 21 Mai 202325 Mai 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13948 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz38th International Conference on High Performance Computing, ISC High Performance 2023
Land/GebietDeutschland
OrtHamburg
Zeitraum21/05/2325/05/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive Meshes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren