Efficient dynamic embedding of arbitrary binary trees into hypercubes

Volker Heun, Ernst W. Mayr

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

16 Zitate (Scopus)

Abstract

In this paper, a deterministic algorithm for dynamically embedding binary trees into next to optimal hypercubes is presented. Due to a known lower bound, any such algorithm must use either randomization or migration, i.e., remapping of tree vertices, to obtain an embedding of trees into hypercubes with small dilation, load, and expansion simultaneously. The algorithm presented here uses migration of previously mapped tree vertices and achieves dilation 9, unit load, expansion <4 and constant node-congestion. Moreover, the embedding can be computed on the hypercube. The amortized time for each new vertex is constant, if in each step one new leaf is spawned. If in each step a group of Mnew leaves is added, the amortized cost for each new group of leaves is bounded by O(log2(M)).

OriginalspracheEnglisch
TitelParallel Algorithms for Irregularly Structured Problems - 3rd International Workshop IRREGULAR 1996, Proceedings
Redakteure/-innenAfonso Ferreira, Jose Rolim, Yousef Saad, Tao Yang
Herausgeber (Verlag)Springer Verlag
Seiten287-298
Seitenumfang12
ISBN (Print)3540615490, 9783540615491
DOIs
PublikationsstatusVeröffentlicht - 1996
Veranstaltung3rd International Workshop on Parallel Algorithms for Irregularly Structured Problems, IRREGULAR 1996 - Santa Barbara, USA/Vereinigte Staaten
Dauer: 19 Aug. 199621 Aug. 1996

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band1117
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz3rd International Workshop on Parallel Algorithms for Irregularly Structured Problems, IRREGULAR 1996
Land/GebietUSA/Vereinigte Staaten
OrtSanta Barbara
Zeitraum19/08/9621/08/96

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient dynamic embedding of arbitrary binary trees into hypercubes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren