Efficient Architectural Design Space Exploration via Predictive Modeling

Engin Ípek, Sally A. Mckee, Karan Singh, Rich Caruana, Bronis R. De Supinski, Martin Schulz

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

49 Zitate (Scopus)

Abstract

Efficiently exploring exponential-size architectural design spaces with many interacting parameters remains an open problem: the sheer number of experiments required renders detailed simulation intractable.We attack this via an automated approach that builds accurate predictive models. We simulate sampled points, using results to teach our models the function describing relationships among design parameters. The models can be queried and are very fast, enabling efficient design tradeoff discovery. We validate our approach via two uniprocessor sensitivity studies, predicting IPC with only 1-2% error. In an experimental study using the approach, training on 1% of a 250- K-point CMP design space allows our models to predict performance with only 4-5% error. Our predictive modeling combines well with techniques that reduce the time taken by each simulation experiment, achieving net time savings of three-four orders of magnitude.

OriginalspracheEnglisch
Seiten (von - bis)1-34
Seitenumfang34
FachzeitschriftACM Transactions on Architecture and Code Optimization
Jahrgang4
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 2008
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient Architectural Design Space Exploration via Predictive Modeling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren