TY - GEN
T1 - Efficient and Feasible Robotic Assembly Sequence Planning via Graph Representation Learning
AU - Atad, Matan
AU - Feng, Jianxiang
AU - Rodriguez, Ismael
AU - Durner, Maximilian
AU - Triebel, Rudolph
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Automatic Robotic Assembly Sequence Planning (RASP) can significantly improve productivity and resilience in modern manufacturing along with the growing need for greater product customization. One of the main challenges in realizing such automation resides in efficiently finding solutions from a growing number of potential sequences for increasingly complex assemblies. Besides, costly feasibility checks are always required for the robotic system. To address this, we propose a holistic graphical approach including a graph representation called Assembly Graph for product assemblies and a policy architecture, Graph Assembly Processing Network, dubbed GRACE for assembly sequence generation. With GRACE, we are able to extract meaningful information from the graph input and predict assembly sequences in a step-by-step manner. In experiments, we show that our approach can predict feasible assembly sequences across product variants of aluminum profiles based on data collected in simulation of a dual-armed robotic system. We further demonstrate that our method is capable of detecting infeasible assemblies, substantially alleviating the undesirable impacts from false predictions, and hence facilitating real-world deployment soon. Code and training data are available at https://github.com/DLR-RM/GRACE.
AB - Automatic Robotic Assembly Sequence Planning (RASP) can significantly improve productivity and resilience in modern manufacturing along with the growing need for greater product customization. One of the main challenges in realizing such automation resides in efficiently finding solutions from a growing number of potential sequences for increasingly complex assemblies. Besides, costly feasibility checks are always required for the robotic system. To address this, we propose a holistic graphical approach including a graph representation called Assembly Graph for product assemblies and a policy architecture, Graph Assembly Processing Network, dubbed GRACE for assembly sequence generation. With GRACE, we are able to extract meaningful information from the graph input and predict assembly sequences in a step-by-step manner. In experiments, we show that our approach can predict feasible assembly sequences across product variants of aluminum profiles based on data collected in simulation of a dual-armed robotic system. We further demonstrate that our method is capable of detecting infeasible assemblies, substantially alleviating the undesirable impacts from false predictions, and hence facilitating real-world deployment soon. Code and training data are available at https://github.com/DLR-RM/GRACE.
UR - http://www.scopus.com/inward/record.url?scp=85165607595&partnerID=8YFLogxK
U2 - 10.1109/IROS55552.2023.10342352
DO - 10.1109/IROS55552.2023.10342352
M3 - Conference contribution
AN - SCOPUS:85165607595
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 8262
EP - 8269
BT - 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Y2 - 1 October 2023 through 5 October 2023
ER -