Efficient Aerodynamic and Aeroacustic Optimization of Propeller Sections Using Bayesian Methods

Andreas Kümmel, Christian Breitsamter

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

Abstract

Due to various design variables, like the blade shape and operating conditions, the optimization of propellers is a complex task. The aerodynamic and aeroacoustic design optimization is conducted by using an efficient machine learning optimization approach, the Bayesian optimization. On the one hand, this allows for a fast and efficient optimization process. On the other hand, the knowledge about the optimization problem is extend and the influence of the individual design variables can be identified. Exemplarily, the radial airfoil sections of the propeller blade are optimized regarding the glide ratio and the aeroacoustic footprint.

OriginalspracheEnglisch
TitelNotes on Numerical Fluid Mechanics and Multidisciplinary Design
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten365-375
Seitenumfang11
DOIs
PublikationsstatusVeröffentlicht - 2021

Publikationsreihe

NameNotes on Numerical Fluid Mechanics and Multidisciplinary Design
Band151
ISSN (Print)1612-2909
ISSN (elektronisch)1860-0824

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient Aerodynamic and Aeroacustic Optimization of Propeller Sections Using Bayesian Methods“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren