Efficient Active Learning Strategies for Monocular 3D Object Detection

Aral Hekimoglu, Michael Schmidt, Alvaro Marcos-Ramiro, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

Processing camera information to perceive their 3D surrounding is essential for building scalable autonomous driving vehicles. For this task, deep learning networks provide effective real-time solutions. However, to compensate for missing depth information in cameras compared to LiDARs, a large amount of labeled data is required for training. Active learning is a training framework where the network actively participates in the data selection process to improve data efficiency and performance. In this work, we propose an active learning pipeline for 3D object detection from monocular images. The main components of our approach are (1) two training-efficient uncertainty estimation strategies, (2) a diversity-based selection strategy to select images that contain the most diverse set of objects, (3) a novel active learning strategy more suitable for training autonomous driving perception networks. Experiments show that combining our proposed uncertainty estimation methods provides a better data saving rate and reaches a higher final performance than baselines. Furthermore, we empirically show performance gains of the presented diversity-based selection strategy and the efficiency of the proposed active learning strategy.

OriginalspracheEnglisch
Titel2022 IEEE Intelligent Vehicles Symposium, IV 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten295-302
Seitenumfang8
ISBN (elektronisch)9781665488211
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE Intelligent Vehicles Symposium, IV 2022 - Aachen, Deutschland
Dauer: 5 Juni 20229 Juni 2022

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
Band2022-June

Konferenz

Konferenz2022 IEEE Intelligent Vehicles Symposium, IV 2022
Land/GebietDeutschland
OrtAachen
Zeitraum5/06/229/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient Active Learning Strategies for Monocular 3D Object Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren