TY - JOUR
T1 - Effects of a taped filter mask on peak power, perceived breathlessness, heart rate, blood lactate and oxygen saturation during a graded exercise test in young healthy adults
T2 - a randomized controlled trial
AU - Ng, Hoi Lam
AU - Trefz, Johannes
AU - Schönfelder, Martin
AU - Wackerhage, Henning
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Face masks are an effective, non-pharmacological strategy to reduce the transmission of Severe Acute Respiratory Syndrome Coronavirus-2 and other pathogens. However, it is a challenge to keep masks sealed during exercise, as ventilation can increase from 5 to 10 L/min at rest to up to 200 L/min so that masks may be blown away from the face. To reduce leakage e.g. during exercise, a face mask was developed that is taped onto the face. The aim of this study was to investigate during a graded exercise test the effect of a taped filter mask on the perception of breathlessness, heart rate, blood lactate concentration, and oxygen saturation when compared to a surgical mask and no mask. Methods: Eight healthy trained participants (4 females), aged 24.5 ± 3.3 years performed graded exercise test until volitional exhaustion under three conditions: (1) No mask/control, (2) surgical mask or (3) taped filter mask. During these tests, we measured perception of breathlessness, heart rate, blood lactate concentration and peripheral oxygen saturation and analysed the resultant data with one or two-way repeated measures ANOVAs. We also used a questionnaire to evaluate mask comfort and analysed the data with paired t-tests. Results: When compared to wearing no mask, maximal workload was significantly reduced with a taped filter face mask by 12 ± 6% (p < 0.001) and with a surgical mask by 3 ± 6% (p > 0.05). Moreover, subjects perceive the sensation of "severe breathlessness" at a 12 ± 9% lower workload (p = 0.012) with a taped face mask, and 7 ± 13% lower workload with a surgical mask (p > 0.05) when compared to wearing no mask. Oxygen saturation at 65% of the maximal workload is 1.5% lower (p = 0.018) with a taped mask than no mask. Heart rate and blood lactate concentration are not significantly different in-between no mask, surgical mask and taped mask at any workload. When compared to wearing a surgical mask, wearing a taped filter face mask has a significantly better wearing comfort (p = 0.038), feels better on the skin (p = 0.004), there is a lower sensation of moisture (p = 0.026) and wearers perceive that less heat is generated (p = 0.021). We found no sex/gender differences for any of the measured parameters. Conclusions: A taped mask is well tolerated during light and moderate exercise intensity but reduces maximal exercise capacity.
AB - Background: Face masks are an effective, non-pharmacological strategy to reduce the transmission of Severe Acute Respiratory Syndrome Coronavirus-2 and other pathogens. However, it is a challenge to keep masks sealed during exercise, as ventilation can increase from 5 to 10 L/min at rest to up to 200 L/min so that masks may be blown away from the face. To reduce leakage e.g. during exercise, a face mask was developed that is taped onto the face. The aim of this study was to investigate during a graded exercise test the effect of a taped filter mask on the perception of breathlessness, heart rate, blood lactate concentration, and oxygen saturation when compared to a surgical mask and no mask. Methods: Eight healthy trained participants (4 females), aged 24.5 ± 3.3 years performed graded exercise test until volitional exhaustion under three conditions: (1) No mask/control, (2) surgical mask or (3) taped filter mask. During these tests, we measured perception of breathlessness, heart rate, blood lactate concentration and peripheral oxygen saturation and analysed the resultant data with one or two-way repeated measures ANOVAs. We also used a questionnaire to evaluate mask comfort and analysed the data with paired t-tests. Results: When compared to wearing no mask, maximal workload was significantly reduced with a taped filter face mask by 12 ± 6% (p < 0.001) and with a surgical mask by 3 ± 6% (p > 0.05). Moreover, subjects perceive the sensation of "severe breathlessness" at a 12 ± 9% lower workload (p = 0.012) with a taped face mask, and 7 ± 13% lower workload with a surgical mask (p > 0.05) when compared to wearing no mask. Oxygen saturation at 65% of the maximal workload is 1.5% lower (p = 0.018) with a taped mask than no mask. Heart rate and blood lactate concentration are not significantly different in-between no mask, surgical mask and taped mask at any workload. When compared to wearing a surgical mask, wearing a taped filter face mask has a significantly better wearing comfort (p = 0.038), feels better on the skin (p = 0.004), there is a lower sensation of moisture (p = 0.026) and wearers perceive that less heat is generated (p = 0.021). We found no sex/gender differences for any of the measured parameters. Conclusions: A taped mask is well tolerated during light and moderate exercise intensity but reduces maximal exercise capacity.
KW - COVID-19
KW - Exercise test
KW - Masks
KW - SARS-CoV-2
UR - http://www.scopus.com/inward/record.url?scp=85124745967&partnerID=8YFLogxK
U2 - 10.1186/s13102-022-00410-8
DO - 10.1186/s13102-022-00410-8
M3 - Article
AN - SCOPUS:85124745967
SN - 2052-1847
VL - 14
JO - BMC Sports Science, Medicine and Rehabilitation
JF - BMC Sports Science, Medicine and Rehabilitation
IS - 1
M1 - 19
ER -