Effective Version Space Reduction for Convolutional Neural Networks

Jiayu Liu, Ioannis Chiotellis, Rudolph Triebel, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In active learning, sampling bias could pose a serious inconsistency problem and hinder the algorithm from finding the optimal hypothesis. However, many methods for neural networks are hypothesis space agnostic and do not address this problem. We examine active learning with convolutional neural networks through the principled lens of version space reduction. We identify the connection between two approaches – prior mass reduction and diameter reduction – and propose a new diameter-based querying method – the minimum Gibbs-vote disagreement. By estimating version space diameter and bias, we illustrate how version space of neural networks evolves and examine the realizability assumption. With experiments on MNIST, Fashion-MNIST, SVHN and STL-10 datasets, we demonstrate that diameter reduction methods reduce the version space more effectively and perform better than prior mass reduction and other baselines, and that the Gibbs vote disagreement is on par with the best query method.

OriginalspracheEnglisch
TitelMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Proceedings
Redakteure/-innenFrank Hutter, Kristian Kersting, Jefrey Lijffijt, Isabel Valera
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten85-100
Seitenumfang16
ISBN (Print)9783030676605
DOIs
PublikationsstatusVeröffentlicht - 2021
VeranstaltungEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020 - Virtual, Online
Dauer: 14 Sept. 202018 Sept. 2020

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12458 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

KonferenzEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020
OrtVirtual, Online
Zeitraum14/09/2018/09/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Effective Version Space Reduction for Convolutional Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren