Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems

Mazahirali Alidina, Justin Shewchuk, Jörg E. Drewes

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

27 Zitate (Scopus)

Abstract

This study was undertaken to investigate whether changes in temperature experienced in MAR systems affect attenuation of trace organic chemicals (TOrCs). A set of laboratory-scale soil columns were placed in a temperature-controlled environmental chamber and operated at five different temperature set-points (30, 20, 10, 8 and 4. °C) covering the range of typical groundwater temperatures in cold, moderate and arid climate regions. Removal of bulk organic carbon both in the infiltration zone as well as during deeper infiltration was independent of temperature. Of the 22 TOrCs investigated, only six chemicals exhibited changes in attenuation as a function of temperature. Attenuation of four of the compounds (diclofenac, gemfibrozil, ketoprofen and naproxen) decreased as the temperature was reduced from 30. °C to 4. °C, likely due to decreased microbial activity at lower temperatures. As the temperature was decreased, however, attenuation of oxybenzone and trimethoprim were noted to increase. This increased attenuation was likely due to more efficient sorption at lower temperatures, though possible changes in the microbial composition as the temperature decreased may also have contributed to this change. Changes in rate constants of attenuation (. ka) for the biotransformed TOrCs with temperature suggested the existence of a critical temperature at 10. °C for three of the four TOrCs, where significant changes to rates of attenuation occurred. Results from this study indicated that for most TOrCs, changes in temperature do not impact their attenuation. Thus, seasonal changes in temperature are not considered to be a major concern for attenuation of most TOrCs in MAR systems.

OriginalspracheEnglisch
Seiten (von - bis)23-31
Seitenumfang9
FachzeitschriftChemosphere
Jahrgang122
DOIs
PublikationsstatusVeröffentlicht - 1 März 2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren