TY - JOUR
T1 - Effect of Rumen-Protected Methionine on Metabolic Profile of Liver, Muscle and Blood Serum Samples of Growing German Simmental Bulls Fed Protein-Reduced Diets
AU - Inhuber, Vivienne
AU - Windisch, Wilhelm
AU - Kleigrewe, Karin
AU - Meng, Chen
AU - Bächler, Benedikt
AU - Gigl, Michael
AU - Steinhoff-Wagner, Julia
AU - Ettle, Thomas
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/8
Y1 - 2023/8
N2 - This study aimed to determine the metabolic response of growing German Simmental bulls fed rations low in crude protein (CP) supplemented with rumen-protected methionine (RPMET). In total, 69 bulls (on average 238 ± 11 days of age at start and 367 ± 25 kg of bodyweight) were assigned to three dietary treatments (n = 23/group): Positive control (CON; 13.7% CP; 2.11 g methionine/kg DM), negative control deficient in CP (RED; 9.04% CP; 1.56 g methionine/kg DM) and crude protein-deficient ration supplemented with RPMET (RED+RPMET; 9.04% CP; 2.54 g methionine/kg DM). At slaughter, samples of liver, muscle and blood serum were taken and underwent subsequent metabolomics profiling using a UHPLC-QTOF-MS system. A total of 6540 features could be detected. Twenty metabolites in the liver, five metabolites in muscle and thirty metabolites in blood serum were affected (p < 0.05) due to dietary treatments. In total, six metabolites could be reliably annotated and were thus subjected to subsequent univariate analysis. Reduction in dietary CP had minimal effect on metabolite abundance in target tissues of both RED and RED+RPMET bulls as compared to CON bulls. The addition of RPMET altered the hepatic anti-oxidant status in RED+RPMET bulls compared to both RED and CON bulls. Results exemplify nutrient partitioning in growing German Simmental bulls: bulls set maintenance as the prevailing metabolic priority (homeostasis) and nutrient trafficking as the second priority, which was directed toward special metabolic functions, such as anti-oxidant pathways.
AB - This study aimed to determine the metabolic response of growing German Simmental bulls fed rations low in crude protein (CP) supplemented with rumen-protected methionine (RPMET). In total, 69 bulls (on average 238 ± 11 days of age at start and 367 ± 25 kg of bodyweight) were assigned to three dietary treatments (n = 23/group): Positive control (CON; 13.7% CP; 2.11 g methionine/kg DM), negative control deficient in CP (RED; 9.04% CP; 1.56 g methionine/kg DM) and crude protein-deficient ration supplemented with RPMET (RED+RPMET; 9.04% CP; 2.54 g methionine/kg DM). At slaughter, samples of liver, muscle and blood serum were taken and underwent subsequent metabolomics profiling using a UHPLC-QTOF-MS system. A total of 6540 features could be detected. Twenty metabolites in the liver, five metabolites in muscle and thirty metabolites in blood serum were affected (p < 0.05) due to dietary treatments. In total, six metabolites could be reliably annotated and were thus subjected to subsequent univariate analysis. Reduction in dietary CP had minimal effect on metabolite abundance in target tissues of both RED and RED+RPMET bulls as compared to CON bulls. The addition of RPMET altered the hepatic anti-oxidant status in RED+RPMET bulls compared to both RED and CON bulls. Results exemplify nutrient partitioning in growing German Simmental bulls: bulls set maintenance as the prevailing metabolic priority (homeostasis) and nutrient trafficking as the second priority, which was directed toward special metabolic functions, such as anti-oxidant pathways.
KW - amino acids
KW - anti-oxidants
KW - ideal protein concept
KW - metabolomics
KW - nutrient partitioning
KW - ruminants
UR - http://www.scopus.com/inward/record.url?scp=85169113036&partnerID=8YFLogxK
U2 - 10.3390/metabo13080946
DO - 10.3390/metabo13080946
M3 - Article
AN - SCOPUS:85169113036
SN - 2218-1989
VL - 13
JO - Metabolites
JF - Metabolites
IS - 8
M1 - 946
ER -