EFFECT OF FUEL REACTIVITY AND OPERATING CONDITIONS ON FLAME ANCHORING IN THE PREMIXING ZONE OF A SWIRL STABILIZED GAS TURBINE COMBUSTOR

Simon Tartsch, Saskia Flebbe, Germano J. Marques de Sousa Ponte, Thomas Sattelmayer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Flashback with subsequent flame anchoring (FA) is an inherent risk of lean premixed gas turbine combustors operated with highly reactive fuel. The present study has been performed to characterize flame stabilization in the premixing zone of a lean premixed swirl stabilized burner and to identify critical combustion characteristics. An optically accessible burner was used for experimental investigations under atmospheric pressure and elevated preheat temperatures. The air mass flow rate, global equivalence ratio and preheat temperature were systematically varied to identify critical operating parameters. Hydrogen-natural gas mixtures with hydrogen mass fractions from 15 to 100 % were studied to evaluate the impact of fuel reactivity. The air-fuel mixture was ignited with a focused single laser pulse to trigger FA in the premixing zone during steady operation. High speed imaging with OH*-chemiluminescence were applied to observe flame characteristics and evaluate flame anchoring propensity. Flame anchoring limits (FAL) are reported in terms of the minimum global equivalence ratio at which the flame was blown out of the premixing zone within a critical time period. A comparison of characteristic time scales at FAL shows that the main impact during flame anchoring is given by the fuel reactivity and to some ex tent by preheat temperature. A Damköhler criterion is derived from the FAL that allows prediction of FA propensity based on operating conditions and 1-D reacting simulations.

OriginalspracheEnglisch
TitelCombustion, Fuels, and Emissions
Herausgeber (Verlag)American Society of Mechanical Engineers (ASME)
ISBN (elektronisch)9780791886953
DOIs
PublikationsstatusVeröffentlicht - 2023
VeranstaltungASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023 - Boston, USA/Vereinigte Staaten
Dauer: 26 Juni 202330 Juni 2023

Publikationsreihe

NameProceedings of the ASME Turbo Expo
Band3A-2023

Konferenz

KonferenzASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023
Land/GebietUSA/Vereinigte Staaten
OrtBoston
Zeitraum26/06/2330/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „EFFECT OF FUEL REACTIVITY AND OPERATING CONDITIONS ON FLAME ANCHORING IN THE PREMIXING ZONE OF A SWIRL STABILIZED GAS TURBINE COMBUSTOR“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren