TY - GEN
T1 - EFFECT OF FUEL REACTIVITY AND OPERATING CONDITIONS ON FLAME ANCHORING IN THE PREMIXING ZONE OF A SWIRL STABILIZED GAS TURBINE COMBUSTOR
AU - Tartsch, Simon
AU - Flebbe, Saskia
AU - Marques de Sousa Ponte, Germano J.
AU - Sattelmayer, Thomas
N1 - Publisher Copyright:
Copyright © 2023 by ASME.
PY - 2023
Y1 - 2023
N2 - Flashback with subsequent flame anchoring (FA) is an inherent risk of lean premixed gas turbine combustors operated with highly reactive fuel. The present study has been performed to characterize flame stabilization in the premixing zone of a lean premixed swirl stabilized burner and to identify critical combustion characteristics. An optically accessible burner was used for experimental investigations under atmospheric pressure and elevated preheat temperatures. The air mass flow rate, global equivalence ratio and preheat temperature were systematically varied to identify critical operating parameters. Hydrogen-natural gas mixtures with hydrogen mass fractions from 15 to 100 % were studied to evaluate the impact of fuel reactivity. The air-fuel mixture was ignited with a focused single laser pulse to trigger FA in the premixing zone during steady operation. High speed imaging with OH*-chemiluminescence were applied to observe flame characteristics and evaluate flame anchoring propensity. Flame anchoring limits (FAL) are reported in terms of the minimum global equivalence ratio at which the flame was blown out of the premixing zone within a critical time period. A comparison of characteristic time scales at FAL shows that the main impact during flame anchoring is given by the fuel reactivity and to some ex tent by preheat temperature. A Damköhler criterion is derived from the FAL that allows prediction of FA propensity based on operating conditions and 1-D reacting simulations.
AB - Flashback with subsequent flame anchoring (FA) is an inherent risk of lean premixed gas turbine combustors operated with highly reactive fuel. The present study has been performed to characterize flame stabilization in the premixing zone of a lean premixed swirl stabilized burner and to identify critical combustion characteristics. An optically accessible burner was used for experimental investigations under atmospheric pressure and elevated preheat temperatures. The air mass flow rate, global equivalence ratio and preheat temperature were systematically varied to identify critical operating parameters. Hydrogen-natural gas mixtures with hydrogen mass fractions from 15 to 100 % were studied to evaluate the impact of fuel reactivity. The air-fuel mixture was ignited with a focused single laser pulse to trigger FA in the premixing zone during steady operation. High speed imaging with OH*-chemiluminescence were applied to observe flame characteristics and evaluate flame anchoring propensity. Flame anchoring limits (FAL) are reported in terms of the minimum global equivalence ratio at which the flame was blown out of the premixing zone within a critical time period. A comparison of characteristic time scales at FAL shows that the main impact during flame anchoring is given by the fuel reactivity and to some ex tent by preheat temperature. A Damköhler criterion is derived from the FAL that allows prediction of FA propensity based on operating conditions and 1-D reacting simulations.
KW - Gas turbine combustors
KW - combustor design
KW - premixed combustion
UR - http://www.scopus.com/inward/record.url?scp=85178347675&partnerID=8YFLogxK
U2 - 10.1115/gt2023-101350
DO - 10.1115/gt2023-101350
M3 - Conference contribution
AN - SCOPUS:85178347675
T3 - Proceedings of the ASME Turbo Expo
BT - Combustion, Fuels, and Emissions
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023
Y2 - 26 June 2023 through 30 June 2023
ER -