EEG source localization for brain-computer-interfaces

Moritz Grosse Wentrup, Klaus Gramann, Edmund Wascher, Martin Buss

Publikation: KonferenzbeitragPapierBegutachtung

18 Zitate (Scopus)

Abstract

While most EEG based Brain-Computer-Interfaces (BCIs) employ machine learning algorithms for classification, we propose to utilize source localization procedures for this purpose. Although the computational demand is considerably higher, this approach could allow the simultaneous classification of a multitude of conditions. We present an extension of Independent Component Analysis (ICA) - based source localization that is fully automatic, and apply this method to the classification of EEG data generated by imaginary movements of the right and left index finger. The results demonstrate that source localization provides a viable alternative to machine learning algorithms for BCIs.

OriginalspracheEnglisch
Seiten128-131
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2005
Veranstaltung2nd International IEEE EMBS Conference on Neural Engineering, 2005 - Arlington, VA, USA/Vereinigte Staaten
Dauer: 16 März 200519 März 2005

Konferenz

Konferenz2nd International IEEE EMBS Conference on Neural Engineering, 2005
Land/GebietUSA/Vereinigte Staaten
OrtArlington, VA
Zeitraum16/03/0519/03/05

Fingerprint

Untersuchen Sie die Forschungsthemen von „EEG source localization for brain-computer-interfaces“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren