EdgeCentric: Anomaly Detection in Edge-Attributed Networks

Neil Shah, Alex Beutel, Bryan Hooi, Leman Akoglu, Stephan Gunnemann, Disha Makhija, Mohit Kumar, Christos Faloutsos

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

44 Zitate (Scopus)

Abstract

Given a network with attributed edges, how can we identify anomalous behavior? Networks with edge attributes are ubiquitous, and capture rich information about interactions between nodes. In this paper, we aim to utilize exactly this information to discern suspicious from typical behavior in an unsupervised fashion, lending well to the traditional scarcity of ground-Truth labels in practical anomaly detection scenarios. Our work has a number of notable contributions, including (a) formulation: while most other graph-based anomaly detection works use structural graph connectivity or node information, we focus on the new problem of leveraging edge information, (b) methodology: we introduce EdgeCentric, an intuitive and scalable compression-based approach for detecting edge-Attributed graph anomalies, and (c) practicality: we show that EdgeCentric successfully spots numerous such anomalies in several large, edge-Attributed real-world graphs, including the Flipkart e-commerce graph with over 3 million product reviews between 1.1 million users and 545 thousand products, where it achieved 0.87 precision over the top 100 results.

OriginalspracheEnglisch
TitelProceedings - 16th IEEE International Conference on Data Mining Workshops, ICDMW 2016
Redakteure/-innenCarlotta Domeniconi, Francesco Gullo, Francesco Bonchi, Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Ricardo Baeza-Yates, Ricardo Baeza-Yates, Zhi-Hua Zhou, Xindong Wu
Herausgeber (Verlag)IEEE Computer Society
Seiten327-334
Seitenumfang8
ISBN (elektronisch)9781509054725
DOIs
PublikationsstatusVeröffentlicht - 2 Juli 2016
Extern publiziertJa
Veranstaltung16th IEEE International Conference on Data Mining Workshops, ICDMW 2016 - Barcelona, Spanien
Dauer: 12 Dez. 201615 Dez. 2016

Publikationsreihe

NameIEEE International Conference on Data Mining Workshops, ICDMW
Band0
ISSN (Print)2375-9232
ISSN (elektronisch)2375-9259

Konferenz

Konferenz16th IEEE International Conference on Data Mining Workshops, ICDMW 2016
Land/GebietSpanien
OrtBarcelona
Zeitraum12/12/1615/12/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „EdgeCentric: Anomaly Detection in Edge-Attributed Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren