TY - JOUR
T1 - easyPheno
T2 - An easy-to-use and easy-to-extend Python framework for phenotype prediction using Bayesian optimization
AU - Haselbeck, Florian
AU - John, Maura
AU - Grimm, Dominik G.
N1 - Publisher Copyright:
© 2021 The Author(s). Published by Oxford University Press.
PY - 2023
Y1 - 2023
N2 - Predicting complex traits from genotypic information is a major challenge in various biological domains. With easyPheno, we present a comprehensive Python framework enabling the rigorous training, comparison and analysis of phenotype predictions for a variety of different models, ranging from common genomic selection approaches over classical machine learning and modern deep learning-based techniques. Our framework is easy-touse, also for non-programming-experts, and includes an automatic hyperparameter search using state-of-the-art Bayesian optimization. Moreover, easyPheno provides various benefits for bioinformaticians developing new prediction models. easyPheno enables to quickly integrate novel models and functionalities in a reliable framework and to benchmark against various integrated prediction models in a comparable setup. In addition, the framework allows the assessment of newly developed prediction models under pre-defined settings using simulated data. We provide a detailed documentation with various hands-on tutorials and videos explaining the usage of easyPheno to novice users. Availability and implementation: easyPheno is publicly available at https://github.com/grimmlab/easyPheno and can be easily installed as Python package via https://pypi.org/project/easypheno/ or using Docker. A comprehensive documentation including various tutorials complemented with videos can be found at https://easypheno.readthe docs.io/.
AB - Predicting complex traits from genotypic information is a major challenge in various biological domains. With easyPheno, we present a comprehensive Python framework enabling the rigorous training, comparison and analysis of phenotype predictions for a variety of different models, ranging from common genomic selection approaches over classical machine learning and modern deep learning-based techniques. Our framework is easy-touse, also for non-programming-experts, and includes an automatic hyperparameter search using state-of-the-art Bayesian optimization. Moreover, easyPheno provides various benefits for bioinformaticians developing new prediction models. easyPheno enables to quickly integrate novel models and functionalities in a reliable framework and to benchmark against various integrated prediction models in a comparable setup. In addition, the framework allows the assessment of newly developed prediction models under pre-defined settings using simulated data. We provide a detailed documentation with various hands-on tutorials and videos explaining the usage of easyPheno to novice users. Availability and implementation: easyPheno is publicly available at https://github.com/grimmlab/easyPheno and can be easily installed as Python package via https://pypi.org/project/easypheno/ or using Docker. A comprehensive documentation including various tutorials complemented with videos can be found at https://easypheno.readthe docs.io/.
UR - http://www.scopus.com/inward/record.url?scp=85159191326&partnerID=8YFLogxK
U2 - 10.1093/bioadv/vbad035
DO - 10.1093/bioadv/vbad035
M3 - Article
AN - SCOPUS:85159191326
SN - 2635-0041
VL - 3
JO - Bioinformatics Advances
JF - Bioinformatics Advances
IS - 1
M1 - vbad035
ER -