TY - JOUR
T1 - Early-warning signals for Cenozoic climate transitions
AU - Boettner, Christopher
AU - Klinghammer, Georg
AU - Boers, Niklas
AU - Westerhold, Thomas
AU - Marwan, Norbert
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/10/15
Y1 - 2021/10/15
N2 - Deep-time paleoclimatic records document large-scale shifts and perturbations in Earth's climate; during the Cenozoic in particular transitions have been recorded on time scales of 10 thousand to 1 million years. Bifurcations in the leading dynamical modes could be a key element driving these events. Such bifurcation-induced critical transitions are typically preceded by characteristic early-warning signals, for example in terms of rising standard deviation and lag-one autocorrelation. These early-warning signals are generated by a widening of the underlying basin of attraction when approaching the bifurcation, a phenomenon dubbed critical slowing down. The associated dynamical transitions should therefore be preceded by characteristic signals that can be detected by statistical methods. Here, we reveal the presence of significant early-warning signals prior to several climate events within a paleoclimate record spanning the last 66 million years - the Cenozoic Era. We computed standard deviation and lag-one autocorrelation of the CENOzoic Global Reference benthic foraminifer carbon and oxygen Isotope Dataset (CENOGRID), comprising two time series of deep sea carbonate isotope variations of 18O and 13C. We find significant early-warning signals for five out of nine previously identified Cenozoic paleoclimatic events in at least one of the two records, which can be considered as viable candidates for bifurcation-induced transitions to be analysed in follow-up studies. Our results suggest that some of the major climate events of the last 66 Ma were triggered by bifurcations in leading modes of variability, indicating bifurcations could be a key component of Earth's climate system deep-time evolution.
AB - Deep-time paleoclimatic records document large-scale shifts and perturbations in Earth's climate; during the Cenozoic in particular transitions have been recorded on time scales of 10 thousand to 1 million years. Bifurcations in the leading dynamical modes could be a key element driving these events. Such bifurcation-induced critical transitions are typically preceded by characteristic early-warning signals, for example in terms of rising standard deviation and lag-one autocorrelation. These early-warning signals are generated by a widening of the underlying basin of attraction when approaching the bifurcation, a phenomenon dubbed critical slowing down. The associated dynamical transitions should therefore be preceded by characteristic signals that can be detected by statistical methods. Here, we reveal the presence of significant early-warning signals prior to several climate events within a paleoclimate record spanning the last 66 million years - the Cenozoic Era. We computed standard deviation and lag-one autocorrelation of the CENOzoic Global Reference benthic foraminifer carbon and oxygen Isotope Dataset (CENOGRID), comprising two time series of deep sea carbonate isotope variations of 18O and 13C. We find significant early-warning signals for five out of nine previously identified Cenozoic paleoclimatic events in at least one of the two records, which can be considered as viable candidates for bifurcation-induced transitions to be analysed in follow-up studies. Our results suggest that some of the major climate events of the last 66 Ma were triggered by bifurcations in leading modes of variability, indicating bifurcations could be a key component of Earth's climate system deep-time evolution.
KW - Abrupt climate transitions
KW - Cenozoic
KW - Critical slowing down
KW - Early-warning signals
KW - Non-linear time series analysis
UR - http://www.scopus.com/inward/record.url?scp=85114643727&partnerID=8YFLogxK
U2 - 10.1016/j.quascirev.2021.107177
DO - 10.1016/j.quascirev.2021.107177
M3 - Article
AN - SCOPUS:85114643727
SN - 0277-3791
VL - 270
JO - Quaternary Science Reviews
JF - Quaternary Science Reviews
M1 - 107177
ER -