Dynamically Self-adjusting Gaussian Processes for Data Stream Modelling

Jan David Hüwel, Florian Haselbeck, Dominik G. Grimm, Christian Beecks

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

One of the major challenges in time series analysis are changing data distributions, especially when processing data streams. To ensure an up-to-date model delivering useful predictions at all times, model reconfigurations are required to adapt to such evolving streams. For Gaussian processes, this might require the adaptation of the internal kernel expression. In this paper, we present dynamically self-adjusting Gaussian processes by introducing Event-Triggered Kernel Adjustments in Gaussian process modelling (ETKA), a novel data stream modelling algorithm that can handle evolving and changing data distributions. To this end, we enhance the recently introduced Adjusting Kernel Search with a novel online change point detection method. Our experiments on simulated data with varying change point patterns suggest a broad applicability of ETKA. On real-world data, ETKA outperforms comparison partners that differ regarding the model adjustment and its refitting trigger in nine respective ten out of 14 cases. These results confirm ETKA’s ability to enable a more accurate and, in some settings, also more efficient data stream processing via Gaussian processes.

OriginalspracheEnglisch
TitelKI 2022
UntertitelAdvances in Artificial Intelligence - 45th German Conference on AI, Proceedings
Redakteure/-innenRalph Bergmann, Lukas Malburg, Stephanie C. Rodermund, Ingo J. Timm
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten96-114
Seitenumfang19
ISBN (Print)9783031157905
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung45th German Conference on Artificial Intelligence, KI 2022 - Trier, Deutschland
Dauer: 19 Sept. 202223 Sept. 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13404 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz45th German Conference on Artificial Intelligence, KI 2022
Land/GebietDeutschland
OrtTrier
Zeitraum19/09/2223/09/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Dynamically Self-adjusting Gaussian Processes for Data Stream Modelling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren