Abstract
We address the problem of segmenting a sequence of images of natural scenes into disjoint regions that are characterized by constant spatio-temporal statistics. We model the spatio-temporal dynamics in each region by Gauss-Markov models, and infer the model parameters as well as the boundary of the regions in a variational optimization framework. Numerical results demonstrate that - in contrast to purely texture-based segmentation schemes - our method is effective in segmenting regions that differ in their dynamics even when spatial statistics are identical.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1236-1242 |
Seitenumfang | 7 |
Fachzeitschrift | Proceedings of the IEEE International Conference on Computer Vision |
Jahrgang | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2003 |
Extern publiziert | Ja |
Veranstaltung | NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION - Nice, Frankreich Dauer: 13 Okt. 2003 → 16 Okt. 2003 |