Dynamic grain models via fast heuristics for diagram representations

Andreas Alpers, Maximilian Fiedler, Peter Gritzmann, Fabian Klemm

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

The present paper introduces a mathematical model for analysing dynamic grain growth. In particular, we show how the characteristic measurements grain volumes, centroids, and central second-order moments at discrete moments in time can be quickly turned into a continuous description of the grain growth process in terms of geometric diagrams (which largely generalize the well-known Voronoi and Laguerre tessellations). We give a theoretical analysis of common optimization-free heuristics in terms of discriminant analysis and evaluate the computational behaviour of our algorithm on real-world data.

OriginalspracheEnglisch
Seiten (von - bis)948-968
Seitenumfang21
FachzeitschriftPhilosophical Magazine
Jahrgang103
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Dynamic grain models via fast heuristics for diagram representations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren