Dynamic detection of transportation modes using Keypoint prediction

Olga Birth, Aaron Frueh, Johann Schlichter

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This paper proposes an approach that makes logical knowledge-based decisions, to determine the transportation mode a person is using in real-time. The focus is set to the detection of different public transportation modes. Hereby is analyzed how additional contextual information can be used to improve the decision making process. The methodology implemented is capable to differentiate between different modes of transportation including walking, driving by car, taking the bus, tram and (suburbain) trains. The implemented knowledge-based system is based on the idea of Keypoints, which provide contextual information about the environment. The proposed algorithm reached an accuracy of about 95%, which outclasses other methodologies in detecting the different public transportation modes a person is currently using.

OriginalspracheEnglisch
TitelMachine Learning, Optimization, and Big Data - 1st International Workshop, MOD 2015 Taormina, Revised Selected Papers
Redakteure/-innenMario Pavone, Giovanni Maria Farinella, Vincenzo Cutello, Panos Pardalos
Herausgeber (Verlag)Springer Verlag
Seiten49-59
Seitenumfang11
ISBN (Print)9783319279251
DOIs
PublikationsstatusVeröffentlicht - 2015
Extern publiziertJa
Veranstaltung1st International Workshop on Machine Learning, Optimization, and Big Data, MOD 2015 - Taormina, Sicily, Italien
Dauer: 21 Juli 201523 Juli 2015

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9432
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz1st International Workshop on Machine Learning, Optimization, and Big Data, MOD 2015
Land/GebietItalien
OrtTaormina, Sicily
Zeitraum21/07/1523/07/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Dynamic detection of transportation modes using Keypoint prediction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren