Duplication-correcting codes

Andreas Lenz, Antonia Wachter-Zeh, Eitan Yaakobi

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

15 Zitate (Scopus)

Abstract

In this work, we propose constructions that correct duplications of multiple consecutive symbols. These errors are known as tandem duplications, where a sequence of symbols is repeated; respectively as palindromic duplications, where a sequence is repeated in reversed order. We compare the redundancies of these constructions with code size upper bounds that are obtained from sphere packing arguments. Proving that an upper bound on the code cardinality for tandem deletions is also an upper bound for inserting tandem duplications, we derive the bounds based on this special tandem deletion error as this results in tighter bounds. Our upper bounds on the cardinality directly imply lower bounds on the redundancy which we compare with the redundancy of the best known construction correcting arbitrary burst insertions. Our results indicate that the correction of palindromic duplications requires more redundancy than the correction of tandem duplications and both significantly less than arbitrary burst insertions.

OriginalspracheEnglisch
Seiten (von - bis)277-298
Seitenumfang22
FachzeitschriftDesigns, Codes, and Cryptography
Jahrgang87
Ausgabenummer2-3
DOIs
PublikationsstatusVeröffentlicht - 15 März 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Duplication-correcting codes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren