TY - GEN
T1 - Driving behavior safety levels
T2 - 7th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021
AU - Yang, Kui
AU - Al Haddad, Christelle
AU - Yannis, George
AU - Antoniou, Constantinos
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/6/16
Y1 - 2021/6/16
N2 - Driving simulators and naturalistic driving studies are often used to understand driving behavior characteristics. It is essential to evaluate the traffic safety of driving behavior in real time, which is helpful to trigger interventions of Advanced Driver Assistance Systems (ADAS) to ensure the driving safety. Therefore, this paper aims to propose a framework of driving behavior safety level classification and evaluation in real time, which was validated by a case study based on a driving simulation experiment. The proposed methodology focuses on finding the optimal number of safety “levels” or “zones” for driving behavior, classifying the safety levels with the help of different clustering techniques, and evaluating the driving safety levels based on developed classification models in real-time. Three clustering techniques were applied, including k-means clustering, hierarchical clustering and model-based clustering. The optimal number of clusters was found to be four using k-means clustering, and the clusters of safety levels will be labelled as “normal” driving, “low risk” driving, “middle risk” driving and “high risk” driving. A Support Vector Machine (SVM) and a decision tree were thereafter developed as the classification model. The accuracy of the combination of model-based clusters and SVM models proved to be the best with four clusters, yet no significant difference to other models was found.
AB - Driving simulators and naturalistic driving studies are often used to understand driving behavior characteristics. It is essential to evaluate the traffic safety of driving behavior in real time, which is helpful to trigger interventions of Advanced Driver Assistance Systems (ADAS) to ensure the driving safety. Therefore, this paper aims to propose a framework of driving behavior safety level classification and evaluation in real time, which was validated by a case study based on a driving simulation experiment. The proposed methodology focuses on finding the optimal number of safety “levels” or “zones” for driving behavior, classifying the safety levels with the help of different clustering techniques, and evaluating the driving safety levels based on developed classification models in real-time. Three clustering techniques were applied, including k-means clustering, hierarchical clustering and model-based clustering. The optimal number of clusters was found to be four using k-means clustering, and the clusters of safety levels will be labelled as “normal” driving, “low risk” driving, “middle risk” driving and “high risk” driving. A Support Vector Machine (SVM) and a decision tree were thereafter developed as the classification model. The accuracy of the combination of model-based clusters and SVM models proved to be the best with four clusters, yet no significant difference to other models was found.
KW - Clustering
KW - Decision trees
KW - Driving behavior safety levels
KW - Driving simulation
KW - SVM
UR - http://www.scopus.com/inward/record.url?scp=85115859416&partnerID=8YFLogxK
U2 - 10.1109/MT-ITS49943.2021.9529309
DO - 10.1109/MT-ITS49943.2021.9529309
M3 - Conference contribution
AN - SCOPUS:85115859416
T3 - 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021
BT - 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 16 June 2021 through 17 June 2021
ER -