Driver- and situation-specific impact factors for the energy prediction of EVs based on crowd-sourced speed profiles

Stefan Grubwinkler, Martin Hirschvogel, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

This paper presents a system for the prediction of the necessary energy for selected trips of electric vehicles (EVs), which can be used for various EV assistants like range estimation. We use statistical features extracted from crowd-sourced speed profiles for the energy prediction, since they consider the varying impact factors of the individual driving style and the prevailing traffic condition. A statistical prediction model uses these features in order to predict the deviation from the mean energy consumption of the EV. Hence, the model predicts the variance of energy consumption caused for example by individual driving behavior. The results show an improvement of the energy prediction by 5.4 percentage points if the statistical features are considered. The prediction of the propulsion energy for EVs before the start of a given route has a relative mean error of 6.8%.

OriginalspracheEnglisch
Titel2014 IEEE Intelligent Vehicles Symposium, IV 2004 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1069-1076
Seitenumfang8
ISBN (Print)9781479936380
DOIs
PublikationsstatusVeröffentlicht - 2014
Veranstaltung25th IEEE Intelligent Vehicles Symposium, IV 2014 - Dearborn, MI, USA/Vereinigte Staaten
Dauer: 8 Juni 201411 Juni 2014

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings

Konferenz

Konferenz25th IEEE Intelligent Vehicles Symposium, IV 2014
Land/GebietUSA/Vereinigte Staaten
OrtDearborn, MI
Zeitraum8/06/1411/06/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Driver- and situation-specific impact factors for the energy prediction of EVs based on crowd-sourced speed profiles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren