TY - GEN
T1 - Don’t PANIC
T2 - 28th International Conference on Information Processing in Medical Imaging, IPMI 2023
AU - Wolf, Tom Nuno
AU - Pölsterl, Sebastian
AU - Wachinger, Christian
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - Alzheimer’s disease (AD) has a complex and multifactorial etiology, which requires integrating information about neuroanatomy, genetics, and cerebrospinal fluid biomarkers for accurate diagnosis. Hence, recent deep learning approaches combined image and tabular information to improve diagnostic performance. However, the black-box nature of such neural networks is still a barrier for clinical applications, in which understanding the decision of a heterogeneous model is integral. We propose PANIC, a prototypical additive neural network for interpretable AD classification that integrates 3D image and tabular data. It is interpretable by design and, thus, avoids the need for post-hoc explanations that try to approximate the decision of a network. Our results demonstrate that PANIC achieves state-of-the-art performance in AD classification, while directly providing local and global explanations. Finally, we show that PANIC extracts biologically meaningful signatures of AD, and satisfies a set of desirable desiderata for trustworthy machine learning. Our implementation is available at https://github.com/ai-med/PANIC.
AB - Alzheimer’s disease (AD) has a complex and multifactorial etiology, which requires integrating information about neuroanatomy, genetics, and cerebrospinal fluid biomarkers for accurate diagnosis. Hence, recent deep learning approaches combined image and tabular information to improve diagnostic performance. However, the black-box nature of such neural networks is still a barrier for clinical applications, in which understanding the decision of a heterogeneous model is integral. We propose PANIC, a prototypical additive neural network for interpretable AD classification that integrates 3D image and tabular data. It is interpretable by design and, thus, avoids the need for post-hoc explanations that try to approximate the decision of a network. Our results demonstrate that PANIC achieves state-of-the-art performance in AD classification, while directly providing local and global explanations. Finally, we show that PANIC extracts biologically meaningful signatures of AD, and satisfies a set of desirable desiderata for trustworthy machine learning. Our implementation is available at https://github.com/ai-med/PANIC.
UR - http://www.scopus.com/inward/record.url?scp=85163986991&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-34048-2_7
DO - 10.1007/978-3-031-34048-2_7
M3 - Conference contribution
AN - SCOPUS:85163986991
SN - 9783031340475
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 82
EP - 94
BT - Information Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings
A2 - Frangi, Alejandro
A2 - de Bruijne, Marleen
A2 - Wassermann, Demian
A2 - Navab, Nassir
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 18 June 2023 through 23 June 2023
ER -