DoA Estimation Using Neural Network-Based Covariance Matrix Reconstruction

Andreas Barthelme, Wolfgang Utschick

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

53 Zitate (Scopus)

Abstract

In this paper, we discuss a new approach to direction of arrival estimation for systems with subarray sampling. We propose to estimate the covariance matrix of the full array from the sample covariance matrices of the subarrays using a neural network. This technique enables the estimation of more sources than radio frequency chains by applying a MUSIC estimator to the reconstructed full covariance matrix. The proposed method is able to outperform classical estimators and has some benefits compared to a recently proposed machine learning-based technique for these systems, which models the direction of arrival estimation problem as a end-to-end regression task.

OriginalspracheEnglisch
Aufsatznummer9400719
Seiten (von - bis)783-787
Seitenumfang5
FachzeitschriftIEEE Signal Processing Letters
Jahrgang28
DOIs
PublikationsstatusVeröffentlicht - 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „DoA Estimation Using Neural Network-Based Covariance Matrix Reconstruction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren