Divergence Behavior of Sequences of Linear Operators with Applications

Holger Boche, Ullrich J. Mönich

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

In this paper we study the spaceability of divergence sets of sequences of bounded linear operators on Banach spaces. For Banach spaces with the s-property, we can give a sufficient condition that guarantees the unbounded divergence on a set that contains an infinite dimensional closed subspace after the zero element has been added. This generalizes the classical Banach–Steinhaus theorem which implies that the divergence set is a residual set. We further prove that many important spaces, e.g., ℓ p , 1 ≤ p< ∞, C[0, 1], L p , 1 < p< ∞, as well as Paley–Wiener and Bernstein spaces, have the s-property. Finally, consequences for the convergence behavior of sampling series and system approximation processes are shown.

OriginalspracheEnglisch
Seiten (von - bis)427-459
Seitenumfang33
FachzeitschriftJournal of Fourier Analysis and Applications
Jahrgang25
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 15 Apr. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Divergence Behavior of Sequences of Linear Operators with Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren