Distributed Link Removal Strategy for Networked Meta-Population Epidemics and Its Application to the Control of the COVID-19 Pandemic

Fangzhou Liu, Yuhong Chen, Tong Liu, Dong Xue, Martin Buss

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

This paper studies the distributed link removal problem for controlling epidemic spreading in a networked meta-population system. A deterministic networked susceptible-infected-recovered (SIR) model is considered to describe the epidemic evolving process. To curb the spread of epidemics, we reformulate the original topology design problem into a minimization program of the Perron-Frobenius eigenvalue of the matrix involving the network topology and transition rates. A modified distributed link removal strategy is developed such that it can be applied to the SIR model with heterogeneous transition rates on weighted digraphs. The proposed approach is implemented to control the COVID-19 pandemic by using the infected and recovered data reported by the German federal states. The numerical experiment shows that the infected percentage can be significantly reduced by employing the distributed link removal strategy.

OriginalspracheEnglisch
Titel60th IEEE Conference on Decision and Control, CDC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2824-2829
Seitenumfang6
ISBN (elektronisch)9781665436595
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung60th IEEE Conference on Decision and Control, CDC 2021 - Austin, USA/Vereinigte Staaten
Dauer: 13 Dez. 202117 Dez. 2021

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
Band2021-December
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz60th IEEE Conference on Decision and Control, CDC 2021
Land/GebietUSA/Vereinigte Staaten
OrtAustin
Zeitraum13/12/2117/12/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Distributed Link Removal Strategy for Networked Meta-Population Epidemics and Its Application to the Control of the COVID-19 Pandemic“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren