Distributed Learning Consensus Control for Unknown Nonlinear Multi-Agent Systems based on Gaussian Processes

Zewen Yang, Stefan Sosnowski, Qingchen Liu, Junjie Jiao, Armin Lederer, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

In this paper, a distributed learning leader-follower consensus protocol based on Gaussian process regression for a class of nonlinear multi-agent systems with unknown dynamics is designed. We propose a distributed learning approach to predict the residual dynamics for each agent. The stability of the consensus protocol using the data-driven model of the dynamics is shown via Lyapunov analysis. The followers ultimately synchronize to the leader with guaranteed error bounds by applying the proposed control law with a high probability. The effectiveness and the applicability of the developed protocol are demonstrated by simulation examples.

OriginalspracheEnglisch
Titel60th IEEE Conference on Decision and Control, CDC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4406-4411
Seitenumfang6
ISBN (elektronisch)9781665436595
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung60th IEEE Conference on Decision and Control, CDC 2021 - Austin, USA/Vereinigte Staaten
Dauer: 13 Dez. 202117 Dez. 2021

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
Band2021-December
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz60th IEEE Conference on Decision and Control, CDC 2021
Land/GebietUSA/Vereinigte Staaten
OrtAustin
Zeitraum13/12/2117/12/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Distributed Learning Consensus Control for Unknown Nonlinear Multi-Agent Systems based on Gaussian Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren