Discrete mechanics and optimal control: An analysis

Sina Ober-Blöbaum, Oliver Junge, Jerrold E. Marsden

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

146 Zitate (Scopus)

Abstract

The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper is to directly discretize the variational description of the system's motion. The resulting optimization algorithm lets the discrete solution directly inherit characteristic structural properties from the continuous one like symmetries and integrals of the motion. We show that the DMOC (Discrete Mechanics and Optimal Control) approach is equivalent to a finite difference discretization of Hamilton's equations by a symplectic partitioned Runge-Kutta scheme and employ this fact in order to give a proof of convergence. The numerical performance of DMOC and its relationship to other existing optimal control methods are investigated.

OriginalspracheEnglisch
Seiten (von - bis)322-352
Seitenumfang31
FachzeitschriftESAIM - Control, Optimisation and Calculus of Variations
Jahrgang17
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Apr. 2011

Fingerprint

Untersuchen Sie die Forschungsthemen von „Discrete mechanics and optimal control: An analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren