Discovering groups of signals in in-vehicle network traces for redundancy detection and functional grouping

Artur Mrowca, Barbara Moser, Stephan Günnemann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Modern vehicles exchange signals across multiple ECUs in order to run various functionalities. With increasing functional complexity the amount of distinct signals grew too large to be analyzed manually. During development of a car only subsets of such signals are relevant per analysis and functional group. Moreover, historical growth led to redundancies in signal specifications which need to be discovered. Both tasks can be solved through the discovery of groups. While the analysis of in-vehicle signals is increasingly studied, the grouping of relevant signals as a basis for those tasks was examined less. We therefore present and extensively evaluate a processing and clustering approach for semi-automated grouping of in-vehicle signals based on traces recorded from fleets of cars.

OriginalspracheEnglisch
TitelMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Proceedings
Redakteure/-innenUlf Brefeld, Alice Marascu, Fabio Pinelli, Edward Curry, Brian MacNamee, Neil Hurley, Elizabeth Daly, Michele Berlingerio
Herausgeber (Verlag)Springer Verlag
Seiten86-102
Seitenumfang17
ISBN (Print)9783030109967
DOIs
PublikationsstatusVeröffentlicht - 2019
VeranstaltungEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD 2018 - Dublin, Irland
Dauer: 10 Sept. 201814 Sept. 2018

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11053 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

KonferenzEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD 2018
Land/GebietIrland
OrtDublin
Zeitraum10/09/1814/09/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Discovering groups of signals in in-vehicle network traces for redundancy detection and functional grouping“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren