Diffusion-Based Generative Prior for Low-Complexity MIMO Channel Estimation

Benedikt Fesl, Michael Baur, Florian Strasser, Michael Joham, Wolfgang Utschick

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

This letter proposes a novel channel estimator based on diffusion models (DMs), one of the currently top-rated generative models, with provable convergence to the mean square error (MSE)-optimal estimator. A lightweight convolutional neural network (CNN) with positional embedding of the signal-To-noise ratio (SNR) information is designed to learn the channel distribution in the sparse angular domain. Combined with an estimation strategy that avoids stochastic resampling and truncates reverse diffusion steps that account for lower SNR than the given pilot observation, the resulting DM estimator unifies low complexity and memory overhead. Numerical results exhibit better performance than state-of-The-Art estimators.

OriginalspracheEnglisch
Seiten (von - bis)3493-3497
Seitenumfang5
FachzeitschriftIEEE Wireless Communications Letters
Jahrgang13
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Diffusion-Based Generative Prior for Low-Complexity MIMO Channel Estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren