DiffRF: Rendering-Guided 3D Radiance Field Diffusion

Norman Müller, Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder, Matthias Nießner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

85 Zitate (Scopus)

Abstract

We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation such as masked completion or single-view 3D synthesis at inference time.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten4328-4338
Seitenumfang11
ISBN (elektronisch)9798350301298
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Kanada
Dauer: 18 Juni 202322 Juni 2023

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2023-June
ISSN (Print)1063-6919

Konferenz

Konferenz2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Land/GebietKanada
OrtVancouver
Zeitraum18/06/2322/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „DiffRF: Rendering-Guided 3D Radiance Field Diffusion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren