TY - JOUR
T1 - Differentiating between adsorption and biodegradation mechanisms while removing trace organic chemicals (TOrCs) in biological activated carbon (BAC) filters
AU - Zhiteneva, Veronika
AU - Ziemendorf, Éric
AU - Sperlich, Alexander
AU - Drewes, Jörg E.
AU - Hübner, Uwe
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/11/15
Y1 - 2020/11/15
N2 - Efficient adsorption of certain trace organic chemicals (TOrCs) present in secondary treated municipal wastewater treatment plant (WWTP) effluents onto granular activated carbon (GAC) has already been demonstrated at lab- and full-scale. Due to high organic matter concentrations in WWTP effluents, GAC filters eventually develop a biofilm and turn into biological activated carbon filters (BAC), where removal of organic compounds is governed by biodegradation as well as by adsorption. However, determining TOrC breakthrough by conducting a long-term BAC column experiment to discern between the removal mechanisms is not possible due to competition for adsorption sites, fluctuating water quality, and other variables. Therefore, a rapid small scale column test (RSSCT) was conducted to determine the contribution of adsorption for select chemicals at 10,000 bed volumes treated (BVT). These results were then used in the pore surface diffusion model (PSDM) to model adsorption behavior at 40,000 BVTs. Pseudo-Freundlich K values obtained from the PSDM model were compared with K values obtained from an integral mass balance calculation. This comparison revealed that the modeling was most accurate for moderately to poorly adsorptive compounds. In comparing RSSCT results to long-term BAC columns, the modeling approach best predicted BAC removal of well adsorbing compounds, such as atenolol, trimethoprim, metoprolol, citalopram, and benzotriazole. However, differences in predicted vs observed BAC removal for the removals of venlafaxine, tramadol and carbamazepine revealed that BAC adsorption capacity was not yet exhausted for these compounds. Therefore, a comparison was not possible. The approach would be improved by operation at longer EBCT and improved calculation of compound fouling indices.
AB - Efficient adsorption of certain trace organic chemicals (TOrCs) present in secondary treated municipal wastewater treatment plant (WWTP) effluents onto granular activated carbon (GAC) has already been demonstrated at lab- and full-scale. Due to high organic matter concentrations in WWTP effluents, GAC filters eventually develop a biofilm and turn into biological activated carbon filters (BAC), where removal of organic compounds is governed by biodegradation as well as by adsorption. However, determining TOrC breakthrough by conducting a long-term BAC column experiment to discern between the removal mechanisms is not possible due to competition for adsorption sites, fluctuating water quality, and other variables. Therefore, a rapid small scale column test (RSSCT) was conducted to determine the contribution of adsorption for select chemicals at 10,000 bed volumes treated (BVT). These results were then used in the pore surface diffusion model (PSDM) to model adsorption behavior at 40,000 BVTs. Pseudo-Freundlich K values obtained from the PSDM model were compared with K values obtained from an integral mass balance calculation. This comparison revealed that the modeling was most accurate for moderately to poorly adsorptive compounds. In comparing RSSCT results to long-term BAC columns, the modeling approach best predicted BAC removal of well adsorbing compounds, such as atenolol, trimethoprim, metoprolol, citalopram, and benzotriazole. However, differences in predicted vs observed BAC removal for the removals of venlafaxine, tramadol and carbamazepine revealed that BAC adsorption capacity was not yet exhausted for these compounds. Therefore, a comparison was not possible. The approach would be improved by operation at longer EBCT and improved calculation of compound fouling indices.
KW - Adsorption
KW - Advanced wastewater treatment
KW - Biological activated carbon filtration
KW - Breakthrough modeling
KW - Rapid small scale column test (RSSCT)
KW - Trace organic chemicals (TOrCs)
UR - http://www.scopus.com/inward/record.url?scp=85087588290&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.140567
DO - 10.1016/j.scitotenv.2020.140567
M3 - Article
C2 - 32659552
AN - SCOPUS:85087588290
SN - 0048-9697
VL - 743
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 140567
ER -