Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral

Ettore Remiddi, Lorenzo Tancredi

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

107 Zitate (Scopus)

Abstract

It is shown that the study of the imaginary part and of the corresponding dispersion relations of Feynman graph amplitudes within the differential equations method can provide a powerful tool for the solution of the equations, especially in the massive case.The main features of the approach are illustrated by discussing the simple cases of the 1-loop self-mass and of a particular vertex amplitude, and then used for the evaluation of the two-loop massive sunrise and the QED kite graph (the problem studied by Sabry in 1962), up to first order in the (d- 4) expansion.

OriginalspracheEnglisch
Seiten (von - bis)400-444
Seitenumfang45
FachzeitschriftNuclear Physics, Section B
Jahrgang907
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2016
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren