TY - JOUR
T1 - Development of an extracorporeal perfusion device for small animal free flaps
AU - Fichter, Andreas M.
AU - Ritschl, Lucas M.
AU - Borgmann, Anna
AU - Humbs, Martin
AU - Luppa, Peter B.
AU - Wolff, Klaus Dietrich
AU - Mücke, Thomas
N1 - Publisher Copyright:
© 2016 Fichter et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Background: Extracorporeal perfusion (ECP) might prolong the vital storage capabilities of composite free flaps, potentially opening a wide range of clinical applications. Aim of the study was the development a validated low-cost extracorporeal perfusion model for further research in small animal free flaps. Methods: After establishing optimal perfusion settings, a specially designed extracorporeal perfusion system was evaluated during 8-hour perfusion of rat epigastric flaps followed by microvascular free flap transfer. Controls comprised sham-operation, ischemia and in vivo perfusion. Flaps and perfusate (diluted blood) were closely monitored by blood gas analysis, combined laser Doppler flowmetry and remission spectroscopy and Indocyanine-Green angiography. Evaluations were complemented by assessment of necrotic area and light microscopy at day 7. Results: ECP was established and maintained for 8 hours with constant potassium and pH levels. Subsequent flap transfer was successful. Notably, the rate of necrosis of extracorporeally perfused flaps (27%) was even lower than after in vivo perfusion (49%), although not statistically significant (P = 0,083). After sham-operation, only 6% of the total flap area became necrotic, while 8-hour ischemia led to total flap loss (98%). Angiographic and histological findings confirmed these observations. Conclusions: Vital storage capabilities of microvascular flaps can be prolonged by temporary ECP. Our study provides important insights on the pathophysiological processes during extracorporeal tissue perfusion and provides a validated small animal perfusion model for further studies.
AB - Background: Extracorporeal perfusion (ECP) might prolong the vital storage capabilities of composite free flaps, potentially opening a wide range of clinical applications. Aim of the study was the development a validated low-cost extracorporeal perfusion model for further research in small animal free flaps. Methods: After establishing optimal perfusion settings, a specially designed extracorporeal perfusion system was evaluated during 8-hour perfusion of rat epigastric flaps followed by microvascular free flap transfer. Controls comprised sham-operation, ischemia and in vivo perfusion. Flaps and perfusate (diluted blood) were closely monitored by blood gas analysis, combined laser Doppler flowmetry and remission spectroscopy and Indocyanine-Green angiography. Evaluations were complemented by assessment of necrotic area and light microscopy at day 7. Results: ECP was established and maintained for 8 hours with constant potassium and pH levels. Subsequent flap transfer was successful. Notably, the rate of necrosis of extracorporeally perfused flaps (27%) was even lower than after in vivo perfusion (49%), although not statistically significant (P = 0,083). After sham-operation, only 6% of the total flap area became necrotic, while 8-hour ischemia led to total flap loss (98%). Angiographic and histological findings confirmed these observations. Conclusions: Vital storage capabilities of microvascular flaps can be prolonged by temporary ECP. Our study provides important insights on the pathophysiological processes during extracorporeal tissue perfusion and provides a validated small animal perfusion model for further studies.
UR - http://www.scopus.com/inward/record.url?scp=84958073723&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0147755
DO - 10.1371/journal.pone.0147755
M3 - Article
C2 - 26808996
AN - SCOPUS:84958073723
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0147755
ER -