Detecting pedestrians at very small scales

Luciano Spinello, Albert Macho, Rudolph Triebel, Roland Siegwart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

This paper presents a novel image based detection method for pedestrians at very small scales (between 16 × 20 and 32 × 40). We propose a set of new distinctive image features based on collections of local image gradients grouped by a superpixel segmentation. Features are collected and classified using AdaBoost. The positive classified features then vote for potential hypotheses that are collected using a mean shift mode estimation approach. The presented method overcomes the common limitations of a sliding window approach as well as those of standard voting approaches based on interest points. Extensive tests have been produced on a dataset with more than 20000 images showing the potential of this approach.

OriginalspracheEnglisch
Titel2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Seiten4313-4318
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 11 Dez. 2009
Extern publiziertJa
Veranstaltung2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009 - St. Louis, MO, USA/Vereinigte Staaten
Dauer: 11 Okt. 200915 Okt. 2009

Publikationsreihe

Name2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009

Konferenz

Konferenz2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Land/GebietUSA/Vereinigte Staaten
OrtSt. Louis, MO
Zeitraum11/10/0915/10/09

Fingerprint

Untersuchen Sie die Forschungsthemen von „Detecting pedestrians at very small scales“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren