Designing quantum annealing schedules using Bayesian optimization

Jernej Rudi Finžgar, Martin J.A. Schuetz, J. Kyle Brubaker, Hidetoshi Nishimori, Helmut G. Katzgraber

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

We propose and analyze the use of Bayesian optimization techniques to design quantum annealing schedules with minimal user and resource requirements. We showcase our scheme with results for two paradigmatic spin models. We find that Bayesian optimization is able to identify schedules resulting in fidelities several orders of magnitude better than standard protocols for both quantum and reverse annealing, as applied to the p-spin model. We also show that our scheme can help improve the design of hybrid quantum algorithms for hard combinatorial optimization problems, such as the maximum independent set problem, and illustrate these results via experiments on a neutral-atom quantum processor available on Amazon Braket.

OriginalspracheEnglisch
Aufsatznummer023063
FachzeitschriftPhysical Review Research
Jahrgang6
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Apr. 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Designing quantum annealing schedules using Bayesian optimization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren