Design of a test system for the development of advanced video chips and software algorithms

Marita Falkinger, Michael Kranzfelder, Dirk Wilhelm, Verena Stemp, Susanne Koepf, Judith Jakob, Andreas Hille, Wolfgang Endress, Hubertus Feussner, Armin Schneider

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

2 Zitate (Scopus)

Abstract

Background. Visual deterioration is a crucial point in minimally invasive surgery impeding surgical performance. Modern image processing technologies appear to be promising approaches for further image optimization by digital elimination of disturbing particles. To make them mature for clinical application, an experimental test environment for evaluation of possible image interferences would be most helpful. Methods. After a comprehensive review of the literature (MEDLINE, IEEE, Google Scholar), a test bed for generation of artificial surgical smoke and mist was evolved. Smoke was generated by a fog machine and mist produced by a nebulizer. The size of resulting droplets was measured microscopically and compared with biological smoke (electrocautery) and mist (ultrasound dissection) emerging during minimally invasive surgical procedures. Results. The particles resulting from artificial generation are in the range of the size of biological droplets. For surgical smoke, the droplet dimension produced by the fog machine was 4.19 μm compared with 4.65 μm generated by electrocautery during a surgical procedure. The size of artificial mist produced by the nebulizer ranged between 45.38 and 48.04 μm compared with the range between 30.80 and 56.27 μm that was generated during minimally invasive ultrasonic dissection. Conclusion. A suitable test bed for artificial smoke and mist generation was developed revealing almost identical droplet characteristics as produced during minimally invasive surgical procedures. The possibility to generate image interferences comparable to those occurring during laparoscopy (electrocautery and ultrasound dissection) provides a basis for the future development of image processing technologies for clinical applications.

OriginalspracheEnglisch
Seiten (von - bis)155-162
Seitenumfang8
FachzeitschriftSurgical Innovation
Jahrgang22
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 20 Apr. 2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Design of a test system for the development of advanced video chips and software algorithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren